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Statistical analysis of ionic current fluctuations in membrane channels
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The statistical analysis of an ionic current signal recorded from a single channel of a biological membrane
is presented. We find the main characteristics of the ionic current probability density, the closed- and open-
state distributions, and the autocorrelation function of the current recordings by using procedures based on the
kernel and tail estimators, the bootstrap methodology; and the Zipf plots. The results provide evidence for the
non-Markovian character of the channel kinetics of the investigated [&t863-651X99)12812-5

PACS numbd(s): 87.17—d, 05.40—a

[. INTRODUCTION convenient to apply, does not, however, give information on
the detailed characteristics of the non-Markovian process.
lon channels, i.e., large proteins that are located in the In this paper we study the statistical properties of real data
membranes of both plant and animal cells, facilitate thesets(the same as ifil]). We give “prescriptions” for ana-
transport of selected ions in and out of the cells. The chanlyZiNg any long enough time seriém this case, current vs
nels are not permanently open for the conduction of ions bu me) by means of which not only .the non-Markov!anr .
continuously switch between closed and open states. The i Narkovian _character of the |nv_es_t|gated current _5|gnal IS
ternal state of the channel undergoes continuous change%r,QUth to light, but also the statistical characteristics related
which result from the constantly varying environment: ran-1© 't can be seen.
dom thermal fluctuations, variations of.the voltage difference Il STATISTICAL INVESTIGATIONS
across th_e cell membrane, conformational changes of chan- OF THE EXPERIMENTAL DATA
nel proteins, etc.

The ion currents belong to the group of the most vitally We study a data set that was recorded from cell attached
important biophysical processes in living celts—3]. The patches of adult locustSchistocerca gregarjaextensor
determination of their nature is necessary for an understandibiae muscle fibers[1,2]. The muscle preparation was
ing of the membrane channel kinetics. Usually, the singlebathed in 180 mM NaCl, 10 mM KCI, 2 mM Cag£ 110 mM
channel recordings are analyzed in terms of models assurd~(2-hydroxyethy)-1-piperazineethanesulphonic acid
ing that the channel kinetics is a Markov process over §HEPES, pH 6.8, and the patch pipettes contained 10 mM
small number of discrete statp$-12]. The assumption that NaCl, 180 mM KCI, 2 mM CaCl, 10 mM HEPESpH 6.8.
the basic kinetics is purely random can be, however, quesshannel current was recorded using a List EPC-7 Patch-
tioned[13]. The suggestion of the non-Markovian characterClamp amplifier. Output was low-pass filtered at 10 kHz,
of channel currents can be found also[8]. On the other digitized at 22 kHz using Sony PCM ES-701 and stored on
hand, there are evidently the cases where the Markovian natandard videotape. Records were transferred to the hard disk
ture of the potassium current through single channels wasf an IBM compatibile PC via an analog-to-digital converter
detected 14]. The problem of the detailed statistical charac-(Axon Instruments sampling at 10 kHz. The complete data
teristics of ion currents is of importance for many reasonsanalyzed here should consist of one record composed of
[15—-24 and has to be solved in order to find realistic models=250 000 values of the channel current measured at equal
of channels action. intervalsAt=0.1 ms, the whole duration being 25 s. The

The idea of testing the Markov vs non-Markov condition error of measurements of ionic current is equal Ad
in ion channel recordings was put forward recently by Tim-=1 pA. A sample of the data set is shown in Fig. 1.
mer and Klein[13]. The statistical test proposed by them,
demonstrated on simulated data, is, however, rather indirect A. Probability density of the ionic current signal
and not simple to use. A new method of testing Markovianity

was proposed by Fulinskit al.[1]. They used a definition of .y, ¢ the investigated time series fall into given intervals of
the Markov process based on the Smoluchowserhapmar&—urrent we construct a histogram.

Kolmogorov equation. The method, being very clear and Let us denote the statistical samplefy" , , whereN is

the length of the sample. We consider a finite intefizgb]
such that

To display the frequency with which states along a trajec-
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FIG. 1. The original signal of ionic current recorded from a  FIG. 3. The ionic current empirical probability density in the
single membrane channel. The data obtained by the courtesy ddg-log scale. The dashed lines represent power laws fulfilled by the
Professor P. N. R. Ushrewood and Dr. I. Mellor from the University branches of low- and high-intensity current peaks. The threshold

of Nottingham, Nottingham, U.K. current is marked by the star.
and is obtained if the number of subintervais,is proportional to
the cube root of the number of observatioNs, ne3/N.
b=max]l;}. A better approximation of the probability density function
[

f(x) may be obtained by means of the kernel density esti-
mator technique introduced by Rosenblatt and Parzen
Next, we divide the intervala,b] into n nonintersecting [27,28. For any reak the kernel density estimator provides
subintervals of equal length=(b—a)/n. A histogram is a an approximate value of the density in the form
function fy ,=fy n(X), constant on each of the subintervals N
[X . Xk+1), k=1,2,...n, and defined as follows: ?N(X):% » blK(xb II).
=1VUN N

; ~ N{li e [Xi Xk 1) X e [ Xk, X 1)}
N (X) = nh ' The kernelK(u) is a continuous, non-negative, and symmet-
ric function satisfying

the specified intervals of the current.
The histograni{see Fig. 2 gives a rough aproximation of
the unknown probability density(x) of the ionic current

signal. The best convergence to the searched density functid¥nereas the windobyjn-1,23, ... is a sequence of positive
real numbers such that lin,..by=0 and limy_,.Nby=o°.

: : : . . ; . . . In our estimation procedures we used the Bertlett kernel

whereN{- - -} counts the number of data values falling into .
f K(u)du=1,

03[ n 4
A
N K(u) S(1-u?) if ue[—1,1],
u f—
0.25F “. ] 0 if ue[—1,1],
o2} 1 with by=10.25N"%3* whereo is the standard deviation

'n‘ of the sample, as it seemed to give the best results. The
' obtained density is shown in Fig. 2. Note that the kernel
1

1

PDF

0.15F . . . . . .
density estimator is a smooth and continous function while

‘ the histogram is very rough and sensitive to a number of
o1r | il considered intervals.

‘ - It is obvious from Fig. 2 that there are two modes of the
008t 1 h i \ 1 current. In order to find the properties of this dichotomous
: Hﬂ— ﬂﬂHH distribution we plot the kernel estimator of the probability
o ﬂ , , HH | , , Hﬁm_, density in a log-log scaléZipf plot [29]). The result is pre-
o 2 4 6 8 M0 12 14 16 18 20 sented in Fig. 3. The log-log plot reveals the general features

'PA of the current probability density. It is seen that the distinctly

FIG. 2. The histogram(solid line and the kernel estimator bimodal function can be regarded as a superposition of two
(dashed ling of ionic current probability density. unimodal densities with clearly pronouced power laws. The



PRE 60 STATISTICAL ANALYSIS OF IONIC CURRENT . .. 7345

PDF

0.51

sighal

-0

5 L L ) ) 1 1 1 1 1
350 355 360 365 370 375 380 38 3N 395 400
t [ms]

I[pA]

FIG. 4. The ionic current empirical probability density in the FIG. 5. The _0'1 signal rgpresenting closed) and_ open(_l)
log-log scale(solid line) and two densities obtained for different ;tates of the |op|c ghannel; dichotomous representation of time se-
parts of the original signal. The dashed lines represent power lawd€S Presented in Fig. 1.
fulfilled by the branches of low- and high-intensity current peaks.

The threshold current is marked by the star. (l5)=11.0:0.1 pA,

original experimental series can be hence split into two disWhere( ) denotes the arithmetic mean. The mean values of

tinct groups of states, the left orfwer values of the cur- e closedf and open timed, are equal:

rend interpreted as the closed state and the right one as the _

open state. The data set was checked by dividing the whole (T)=0.84+0.01 ms, @D

record into smaller subrecords. It has been found that the

power laws of the component distributions are almost con-

stant and do not depend on the number of observations takgfhile the maximum values of the closed and open times,

into account, while the shape of the ionic density estimatogiven with the experimental error, are

changed particulary the position of the minimum between

the peaks moves quite unpredictalisig. 4)]. maxXT.}=300.8-0.1 ms

The statistical propetries of the sample rec@¥i). 1) can

be easily derived if we “translate” the record into a dichoto- and

mous 0-1 signal. The dichotomous signal can be obtained by

separating the current values into two groups of states with

respect to the threshold curreht: the closed one foi

<I* and the open one fdr>1*. We put 0 for the closed

states and 1 otherwise. The threshididcannot be, however,

equal to the value of the current for which the density esti-

mator takes minimum. The position of the minimal value of = To investigate the closed- and open-time distributions let

the estimator varies with the sample and the sample’s sizes introduce the notion of a distribution’s tail. The tail of the

(see Fig. 4 Our methodology of findind* is based on the distributionF(t) of a random variabld with the probability

weak dependence of the power laws of the component derdensityf(t) is defined a$30]

sities on the sample taken from the original experimental

series. We assume the threshofdto be equal to the cur- _1_ _ J’w

rent’s value for which the power laws intersésee Fig. 3. PIT=t=1-F( t f(TaT.

The result is shown in Fig. 5, where the threshbld=5.6

+0.2 pA. Note that the difference in th& values obtained The tail properties of the distributidh(t) can be revealed by

here and if1] (i.e., 5.0-0.2 pA) results from using differ- constructing the tail estimator

ent methods of the threshold determination. That also influ-

enced statistic properties of the dichotomous signal; e.g., the 1-F(t)= N{Ti>t} 2.3

number of distinguished closed and open states has been M '

increased by 4%.

The mean value of the current in the closed states is equé®r @ sample{T;}\, of the closed and open times, respec-

to tively, and representing it by means of the log-log plot. The

result is shown in Fig. 6. The straight linier t>1) clearly
(1)=3.2=0.1 pA indicate the power-law behavitr ® for both the closed- and

open-time distributions with the exponddtdeterminated by

and in the open states the slope of the line

(T,)=0.79+0.01 ms, (2.2

maxT,}=27.2-0.1 ms,

respectively.

B. Tail properties of closed- and open-time distributions



7346 SZYMON MERCIK, KARINA WERON, AND ZUZANNA SIWY PRE 60

10° . . . . 2 r ; : . .
+ %0,
+ % 1.5 4
+ 0g
+, O, _
+ R \ £ 4 i
34,% 3 e
107" oy J
e tg@»\ 0.5F 1
%, |
& *-fq. 0 5000 10000 15000 20000 25000 30000
E’: by m
T 2 \ ‘b*
—10°F Q E E
A =N 6 . ; : . ;
&
> ﬁm
\ Sy
Sy 4+
@ N =
& Ty £
10°F & AR e
. i 2 4
o A
\
X 4
"\ 0 . L L . L
=] '0 o 7 L > 0 5000 10000 15000 20000 25000 30000
10 10 10 10 m

t [ms]
FIG. 7. Dependence of the Hill estimator values of the exponent

FIG. 6. The tails of the closederossesand open-timécircles D for closed-(top) and open-time stateottom upon the sample
distributions in log-log scale with fitted lineglashed line for the  |engthm,

closed- and dash-dotted line for the open-time distribution. tail

D.=1.25+0.03
D.=1.24+0.04

and
and

= +
D,=3.85+0.19. D,=4.16-0.17

for the closed and open times, respectively. Note that for the
larger power exponent related to the open states the volatility
is greater. This occurs because the larger power-law expo-
nents are more sensitive to fluctuations of single points in

The heavier tail belongs to the closed-time distribution.
The precise value of the exponebtcan be found with
help of the Hill estimator. The estimator of the exponeris

given by approximations.
A 1
Dmm== ’ C. Short- and long-range correlation properties
YM,m S .
of the ionic current signal
where The autocorrelation functior(s,t) of the ionic current
signal{l}{_, is defined as
m—1
2 — ls— lgrt—
'yM,m_a 21 |ogT(i)—|ogT(m), (2.9 K(s,t)= ((Is= e (Isi Ms+t)>,

0505+t

andm<M is a positive integer which determines the Iengthwhereas is a standard deviation and, is the mean value of

of the sample taken ?nto account !n 'the caIcuIa'\Elions. Thefhe sample at the momest30]. If we assume that the se-
above procedure applies to the statistical saniPl¢i~1 re-  ries’ properties are stationary in time, we get that the auto-
arranged in a nondecreasing order, i.83)<T)<T@)  correlation function is given by

<---<Ty. Toimprove the calculations we had to use the

Hill estimator for bootstrap samples consisting of 100000

elements. The bootstap methodold@l] helps us to refine (Il gpt)— 2

the time discretization(The shortest time interval in the ex- k(t)=«(st)= - 5

perimental record is equal to 0.1 ms, that is, about 1/8 of the 7

mean value of closed and open timethe dependence of

the tail estimator on the lengtim of sample taken into cal- i.e., it is independent of the momesibf the initial observa-
culation is presented in Fig. 7. One can observe that there tion. Hereu is the mean value of the sample and is the

an interval of stabilization of the estimator value after highsample’s variation. The stationarity of the record was
volatility interval for smallm. The power-law exponents de- checked by dividing it into few smaller subrecords and by
rived by means of the Hill estimator are calculating the statistical properties for every subrecord sepa-
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10° . . . in [32]. For a signal occurring in one dimension, the fractal
dimensiond lies between 1 and 2. The fractal dimensibn
and the exponent of autocorrelation scalibg,, are related
by a simple, linear formulfl4]

d=1 D 2.6
=1+ " (2.6)

k()

AN d belonging to the range 1-1.5 indicates a positive correla-
= tion between the nearest-neighbor points. When there is no
correlation in the systerd is equal to 1.5d higher than 1.5
indicates a negative correlation between neighboring values.
The fractal dimension, calculated on the basis of Eq.
A (2.6), for three different scaling regions of the autocorrela-
tion function is equal to

e

i+

107k +
10" 0’ 10 0 1.16£0.02 for t<1 ms,
t [ms]
d=4 1.07£0.01 for 1 msit<40 ms, (2.7
FIG. 8. The autocorrelation function of the ionic current signal. 1.297+0.05 for t>40 ms.

rately. It was found that the results were simi(aithin ex- ) ) )
perimental errorfor every subrecord and for the whole time The fractal dimension suggests, therefore, the existence of a
series. positive correlation in the system.

The autocorrelation functior(t) is plotted in Fig. 8. One
can easily distinguish three intervals of different behavior of
the autocorrelation function: the first one foxl ms, the ll. CONCLUSIONS

ie:gnd on_;:—zhfor L 'St<|4.0 n;s, etl.nd (tjhe third ongﬂ:‘dr The main objective of the paper was to get information on
ms. ihe autocorrefation function ecreases With pPOWef,o nature and statistical characteristics of potassium current
laws in all intervals, but the power exponent is different 'nthrough a locust potassium chanfigl2]. In the analysis we

each of them. The power laws are have applied widely used statistical tools, which we, how-
ever, enriched and modified. The probability density function
170325004 5y t<1 ms, (PDPF has been found through the application of the kernel

014+ density estimator technique rather than the more popular but
o002 for 1 ms<t<40 ms, (2.5 noncontinuous histogram. The usefulness of the analysis of
t7055+010 for t>40 ms. the PDF in log-log coordinates has been emphasized. It al-
lowed us to discover power-law scaling at the closed and
open states distributions. The exponents of PDF scaling ap-
The autocorrelation function can be treated as a measure pkared to be surprisingly “stable” and independent of the
memory in the system while its exponents give informationnumber of observations considered. Power laws have also
on the speed of correlation loss between states separatedbeen found in dwell-time distributionéopen and closed
time. The first scaling region extends to 1 ms, which is of theApplication of the Hill estimator and the bootstrap method-
same order of magnitude as the average opening and closimgogy allowed us to get precise values of the exponents. We
times (0.79 and 0.84 ms, respectivelyit describes, there- have also examined short- and long-time correlation in the
fore, the correlation falloff while the system stays in onesystem by means of the autocorrelation function. Three re-
state: open or closed. Forbelonging to(1,40 ms the cor-  gions of the autocorrelation function with different power-
relation function scales with exponent 048.02. A low law decays have been clearly distinguished. Low values of
value of the exponent assures a slow correlation fall.t As the exponents up to 40 ms assure slow correlation falloff and
here is larger than the sum of average opening and closinghe existence of memory in the system. The non-Markovian
times, and also than the longest open time duration, the secharacter of the experimental data of potassium current, ex-
ond scaling region ok(t) function describes the long-range amined already if1], has been, therefore, confirmed. The
correlation between subsequent, different states of the chaguestion, which appears in this context, is which physical
nel. Note that fort equal to 40 ms the autocorrelation func- phenomena may be responsible for observed ionic current
tion still takes a high value. The third region ®(t) scaling  behavior? One has to take into account that recorded current
shows the fastest correlation falloff. represents a response of the whole system, consisting of ions
The observed behavior of the autocorrelation function, reand the channel, to an external stim@oltage in the exam-
vealing the existence of long-range correlatiomemory in ined casg The non-Markovian character of the recorded
the system, clearly indicates the non-Markovianity of thedata may result, therefore, from interactions between channel
time series behavior examined. Bassignhwatel. point  structure and ions inside the channel. An influence of inter-
out [14] the possibility of using the autocorrelation function nal adsorption[33], “a crowding” of ions inside narrow
in an estimation of the fractal dimension of a time series. Theores[34,35, and of conformational changes of polymers
fractal nature of ion-channel activity has also been describedhains[36] has already been pointed out. The state of the

K(t)oc
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whole system, being a result of interactions between ions and ACKNOWLEDGMENTS

between ions and the channel, can influence the future his-

tory of the system, seen as a high value of the correlation. We are grateful to Professor P. N. R. Usherwood and Dr.
We would like to emphasize that the statistical analysid. Mellor from the University of Nottingham for providing us

presented in this paper can be applied to any long enoughith the experimental data of ion current through a high-

time series, and enable one to get information on the maiconductance locust potassium channel. Part of this work

statistical characteristics and the nature of the physical proZ.S) was done under Silesian University of Technology

cess examined. Grant No. BW-430/RCh4/99.

[1] A. Fulinski, Z. Grzywna, |. Mellor, Z. Siwy, and P. N. R. [19] A. Fulinski, Phys. Rev. Lett79, 4926(1997; Chaos8, 549
Usherwood, Phys. Rev. &8, 919(1998. (1998.

[2] E. Gorczyska, P. L. Huddie, B. A. Miller, I. R. Mellor, R. L. [20] J. A. Fay, Phys. Rev. B6, 3460(1997.
Ramsey, and P. N. R. Usherwood, Bfius Arch. Ges. Physiol. [21] E. Di Cera and P. E. Phillipson, J. Chem. Phgs, 6006

Menschen Tierel32, 597 (1996. (1990. _ _
[3] J. W. Mozrzymas, M. Martina, and F. Ruzzier, Rftus Arch. [22] M. Schienbein and H. Gruler, Phys. Rev5B, 7116(1997).
433, 413(1997). [23] F. Moss and X. Pei, Naturg_ondon 376, 211(1995.

[4] E. Neher and B. Sakmann, Natuiieondon) 260, 799 (1976. [24] S. M. Bezrukov and 1. ngyanoy, Natueondon 378 362
[5] J. B. Patlak, K. A. F. Gration, and P. N. R. Usherwood, Nature (1999; 335’ 319(1997), Biophys. J.73, 2456 (1997).
(London 278 643 (1979. [25] J. J. Collins, C. C. Chow, and T. T. Imhoff, Natufleondon

[6] Single Channel Recordingsdited by B. Sakmann and E. Ne- 376 236(.19.95); Phys. Rev. E-).Z’ R3321(1999.
her (Plenum Press, New York, 1083 [26] D. J. Christini and J. J. Collins, Phys. Rev. L€t 2782

) . (1995.
[7] L. S. Liebovitch, J. Stat. Phy§.0, 329 (1993. . T
) [27] L. Devroye,A Course on Density EstimatidBirkhauser, Bos-
[8] L. J. de Felice and A. Isaac, J. Stat. Phy8, 339(1993. ton, 1987,

[9] . Petracchi, C. Ascoli, M. Barbi, S. Chillemi, M. Pellegrini, [28] A. Janicki and A. WeronSimulation and Chaotic Behavior of

and M. Pellegrino, J. Stat. Phyg0, 393(1993. a-Stable Stochastic Processéslarcel Dekker, New York,
[10] D. Colquhoun and A. G. Hawkes, Proc. R. Soc. London, Ser. 1994

B 211, 205(1981). [29] G. K. Zipf, Human Behavior and the Principle of Least Effort
[11] R. Horn, inlon Channels: Molecular and Physiological as- (Addison-Wesley, Reading, MA, 1949
pects edited by W. D. Stein(Academic Press, New York, [30]W. Feller, An Introduction to Probability Theory and Its Ap-
1984. plications 2nd ed.(Wiley, New York, 197).
[12] A. L. Blatz and K. L. Magleby, J. PhysiolLondon 378 141 [31] B. Efron, Ann. Stat7, 1 (1992.
(1986. [32] S. B. Lowen, L. S. Liebovitch, and J. A. White, Phys. Rev. E
[13] J. Timmer and S. Klein, Phys. Rev.35, 3306(1997. 59, 5970(1999.
[14] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. WEsac- [33] Z. J. Grzywna, L. S. Liebovitch, and Z. Siwy, J. Membr. Sci.
tal Physiology(Oxford University Press, Oxford, 1994 242, 235(1998.

[15] B. Robertson and R. D. Astumian, Biophys5J, 689 (1990. [34] Z. J. Grzywna, Z. Siwy, and C. L. Bashford, J. Membr. Sci.
[16] V. S. Markin, T. Y. Tsong, R. D. Astumian, and B. Robertson, 121, 261 (1996.
J. Chem. Phys93, 5062(1990. [35] Z. J. Grzywna and Z. Siwy, Int. J. Bifurcation Chaos Appl.
[17] V. S. Markin and T. Y. Tsong, Biophys. 39, 1308(1991). Sci. Eng.5, 1115(1997.
[18] B. Robertson and R. D. Astumian, J. Chem. P34.7414  [36] M. Karplus and J. A. McCammon, Annu. Rev. Biocheb3,
(1991. 263(1983.



