
d

PHYSICAL REVIEW E DECEMBER 1999VOLUME 60, NUMBER 6
Statistical analysis of ionic current fluctuations in membrane channels
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The statistical analysis of an ionic current signal recorded from a single channel of a biological membrane
is presented. We find the main characteristics of the ionic current probability density, the closed- and open-
state distributions, and the autocorrelation function of the current recordings by using procedures based on the
kernel and tail estimators, the bootstrap methodology; and the Zipf plots. The results provide evidence for the
non-Markovian character of the channel kinetics of the investigated data.@S1063-651X~99!12812-5#
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I. INTRODUCTION

Ion channels, i.e., large proteins that are located in
membranes of both plant and animal cells, facilitate
transport of selected ions in and out of the cells. The ch
nels are not permanently open for the conduction of ions
continuously switch between closed and open states. Th
ternal state of the channel undergoes continuous chan
which result from the constantly varying environment: ra
dom thermal fluctuations, variations of the voltage differen
across the cell membrane, conformational changes of c
nel proteins, etc.

The ion currents belong to the group of the most vita
important biophysical processes in living cells@1–3#. The
determination of their nature is necessary for an understa
ing of the membrane channel kinetics. Usually, the sin
channel recordings are analyzed in terms of models ass
ing that the channel kinetics is a Markov process ove
small number of discrete states@4–12#. The assumption tha
the basic kinetics is purely random can be, however, qu
tioned @13#. The suggestion of the non-Markovian charac
of channel currents can be found also in@9#. On the other
hand, there are evidently the cases where the Markovian
ture of the potassium current through single channels
detected@14#. The problem of the detailed statistical chara
teristics of ion currents is of importance for many reaso
@15–26# and has to be solved in order to find realistic mod
of channels action.

The idea of testing the Markov vs non-Markov conditio
in ion channel recordings was put forward recently by Ti
mer and Klein@13#. The statistical test proposed by them
demonstrated on simulated data, is, however, rather ind
and not simple to use. A new method of testing Markovian
was proposed by Fulinskiet al. @1#. They used a definition o
the Markov process based on the Smoluchowski-Chapm
Kolmogorov equation. The method, being very clear a
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convenient to apply, does not, however, give information
the detailed characteristics of the non-Markovian process

In this paper we study the statistical properties of real d
sets~the same as in@1#!. We give ‘‘prescriptions’’ for ana-
lyzing any long enough time series~in this case, current vs
time! by means of which not only the non-Markovian~or
Markovian! character of the investigated current signal
brought to light, but also the statistical characteristics rela
to it can be seen.

II. STATISTICAL INVESTIGATIONS
OF THE EXPERIMENTAL DATA

We study a data set that was recorded from cell attac
patches of adult locust~Schistocerca gregaria! extensor
tibiae muscle fibers@1,2#. The muscle preparation wa
bathed in 180 mM NaCl, 10 mM KCl, 2 mM CaCl2, 10 mM
4-~2-hydroxyethyl!-1-piperazineethanesulphonic ac
~HEPES!, pH 6.8, and the patch pipettes contained 10 m
NaCl, 180 mM KCl, 2 mM CaCl2, 10 mM HEPES,pH 6.8.
Channel current was recorded using a List EPC-7 Pa
Clamp amplifier. Output was low-pass filtered at 10 kH
digitized at 22 kHz using Sony PCM ES-701 and stored
standard videotape. Records were transferred to the hard
of an IBM compatibile PC via an analog-to-digital convert
~Axon Instruments! sampling at 10 kHz. The complete da
analyzed here should consist of one record composed oN
5250 000 values of the channel current measured at e
intervals Dt50.1 ms, the whole duration being 25 s. Th
error of measurements of ionic current is equal toDI
51 pA. A sample of the data set is shown in Fig. 1.

A. Probability density of the ionic current signal

To display the frequency with which states along a traj
tory of the investigated time series fall into given intervals
current we construct a histogram.

Let us denote the statistical sample by$I i% i 51
N , whereN is

the length of the sample. We consider a finite interval@a,b#
such that

a<min
i

$I i%
7343 © 1999 The American Physical Society
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and

b>max
i

$I i%.

Next, we divide the interval@a,b# into n nonintersecting
subintervals of equal lengthh5(b2a)/n. A histogram is a
function f N,n5 f N,n(x), constant on each of the subinterva
@xk ,xk11), k51,2, . . .n, and defined as follows:

f N,n~x!5
N$I iP@xk ,xk11!:xP@xk ,xk11!%

nh
,

whereN$•••% counts the number of data values falling in
the specified intervals of the current.

The histogram~see Fig. 2! gives a rough aproximation o
the unknown probability densityf (x) of the ionic current
signal. The best convergence to the searched density fun

FIG. 1. The original signal of ionic current recorded from
single membrane channel. The data obtained by the courtes
Professor P. N. R. Ushrewood and Dr. I. Mellor from the Univers
of Nottingham, Nottingham, U.K.

FIG. 2. The histogram~solid line! and the kernel estimato
~dashed line! of ionic current probability density.
ion

is obtained if the number of subintervals,n, is proportional to
the cube root of the number of observations,N: n}A3 N.

A better approximation of the probability density functio
f (x) may be obtained by means of the kernel density e
mator technique introduced by Rosenblatt and Par
@27,28#. For any realx the kernel density estimator provide
an approximate value of the density in the form

f̂ N~x!5
1

N (
i 51

N
1

bN
KS x2I i

bN
D .

The kernelK(u) is a continuous, non-negative, and symm
ric function satisfying

E
2`

`

K~u!du51,

whereas the window$bN%N51,2,3, . . . is a sequence of positive
real numbers such that limN→`bN50 and limN→`NbN5`.
In our estimation procedures we used the Bertlett kernel

K~u!5H 3
4 ~12u2! if uP@21,1#,

0 if u¹@21,1#,

with bN510.25sN20.34, wheres is the standard deviation
of the sample, as it seemed to give the best results.
obtained density is shown in Fig. 2. Note that the ker
density estimator is a smooth and continous function wh
the histogram is very rough and sensitive to a number
considered intervals.

It is obvious from Fig. 2 that there are two modes of t
current. In order to find the properties of this dichotomo
distribution we plot the kernel estimator of the probabili
density in a log-log scale~Zipf plot @29#!. The result is pre-
sented in Fig. 3. The log-log plot reveals the general featu
of the current probability density. It is seen that the distinc
bimodal function can be regarded as a superposition of
unimodal densities with clearly pronouced power laws. T

of
FIG. 3. The ionic current empirical probability density in th

log-log scale. The dashed lines represent power laws fulfilled by
branches of low- and high-intensity current peaks. The thresh
current is marked by the star.
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original experimental series can be hence split into two d
tinct groups of states, the left one~lower values of the cur-
rent! interpreted as the closed state and the right one as
open state. The data set was checked by dividing the w
record into smaller subrecords. It has been found that
power laws of the component distributions are almost c
stant and do not depend on the number of observations t
into account, while the shape of the ionic density estima
changes@particulary the position of the minimum betwee
the peaks moves quite unpredictably~Fig. 4!#.

The statistical propetries of the sample record~Fig. 1! can
be easily derived if we ‘‘translate’’ the record into a dichot
mous 0-1 signal. The dichotomous signal can be obtained
separating the current values into two groups of states w
respect to the threshold currentI * : the closed one forI
,I * and the open one forI .I * . We put 0 for the closed
states and 1 otherwise. The thresholdI * cannot be, however
equal to the value of the current for which the density e
mator takes minimum. The position of the minimal value
the estimator varies with the sample and the sample’s
~see Fig. 4!. Our methodology of findingI * is based on the
weak dependence of the power laws of the component d
sities on the sample taken from the original experimen
series. We assume the thresholdI * to be equal to the cur
rent’s value for which the power laws intersect~see Fig. 3!.
The result is shown in Fig. 5, where the thresholdI * 55.6
60.2 pA. Note that the difference in theI * values obtained
here and in@1# ~i.e., 5.060.2 pA) results from using differ-
ent methods of the threshold determination. That also in
enced statistic properties of the dichotomous signal; e.g.,
number of distinguished closed and open states has
increased by 4%.

The mean value of the current in the closed states is e
to

^I c&53.260.1 pA

and in the open states

FIG. 4. The ionic current empirical probability density in th
log-log scale~solid line! and two densities obtained for differen
parts of the original signal. The dashed lines represent power
fulfilled by the branches of low- and high-intensity current pea
The threshold current is marked by the star.
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^I o&511.060.1 pA,

where^ & denotes the arithmetic mean. The mean values
the closed-Tc and open timesTo are equal:

^Tc&50.8460.01 ms, ~2.1!

^To&50.7960.01 ms, ~2.2!

while the maximum values of the closed and open tim
given with the experimental error, are

max$Tc%5300.860.1 ms

and

max$To%527.260.1 ms,

respectively.

B. Tail properties of closed- and open-time distributions

To investigate the closed- and open-time distributions
us introduce the notion of a distribution’s tail. The tail of th
distributionF(t) of a random variableT with the probability
density f (t) is defined as@30#

P$T.t%512F~ t !5E
t

`

f ~T!dT.

The tail properties of the distributionF(t) can be revealed by
constructing the tail estimator

12F̂~ t !5
N$Ti.t%

M
~2.3!

for a sample$Ti% i 51
M of the closed and open times, respe

tively, and representing it by means of the log-log plot. T
result is shown in Fig. 6. The straight lines~for t@1) clearly
indicate the power-law behaviort2D for both the closed- and
open-time distributions with the exponentD determinated by
the slope of the line

s
.

FIG. 5. The 0-1 signal representing closed~0! and open~1!
states of the ionic channel; dichotomous representation of time
ries presented in Fig. 1.
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Dc51.2460.04

and

Do53.8560.19.

The heavier tail belongs to the closed-time distribution.
The precise value of the exponentD can be found with

help of the Hill estimator. The estimator of the exponentD is
given by

D̂M ,m5
1

ĝM ,m

,

where

ĝM ,m5
1

m (
i 51

m21

logT( i )2 logT(m) , ~2.4!

andm,M is a positive integer which determines the leng
of the sample taken into account in the calculations. T
above procedure applies to the statistical sample$Ti% i 51

M re-
arranged in a nondecreasing order, i.e.,T(1)<T(2)<T(3)
<•••<T(M ) . To improve the calculations we had to use t
Hill estimator for bootstrap samples consisting of 100 0
elements. The bootstap methodology@31# helps us to refine
the time discretization.~The shortest time interval in the ex
perimental record is equal to 0.1 ms, that is, about 1/8 of
mean value of closed and open times.! The dependence o
the tail estimator on the lengthm of sample taken into cal
culation is presented in Fig. 7. One can observe that the
an interval of stabilization of the estimator value after hi
volatility interval for smallm. The power-law exponents de
rived by means of the Hill estimator are

FIG. 6. The tails of the closed-~crosses! and open-time~circles!
distributions in log-log scale with fitted lines~dashed line for the
closed- and dash-dotted line for the open-time distribution tail!.
e

0

e

is

Dc51.2560.03

and

Do54.1660.17

for the closed and open times, respectively. Note that for
larger power exponent related to the open states the vola
is greater. This occurs because the larger power-law ex
nents are more sensitive to fluctuations of single points
approximations.

C. Short- and long-range correlation properties
of the ionic current signal

The autocorrelation functionk(s,t) of the ionic current
signal$I t% t51

T is defined as

k~s,t !5
^~ I s2ms!~ I s1t2ms1t!&

ssss1t
,

wheress is a standard deviation andms is the mean value of
the sample at the moments @30#. If we assume that the se
ries’ properties are stationary in time, we get that the au
correlation function is given by

k~ t !5k~s,t !5
^I sI s1t&2m2

s2
;

i.e., it is independent of the moments of the initial observa-
tion. Herem is the mean value of the sample ands2 is the
sample’s variation. The stationarity of the record w
checked by dividing it into few smaller subrecords and
calculating the statistical properties for every subrecord se

FIG. 7. Dependence of the Hill estimator values of the expon
D for closed-~top! and open-time states~bottom! upon the sample
lengthm.
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rately. It was found that the results were similar~within ex-
perimental error! for every subrecord and for the whole tim
series.

The autocorrelation functionk(t) is plotted in Fig. 8. One
can easily distinguish three intervals of different behavior
the autocorrelation function: the first one fort,1 ms, the
second one for 1 ms,t,40 ms, and the third one fort
.40 ms. The autocorrelation function decreases with po
laws in all intervals, but the power exponent is different
each of them. The power laws are

k~ t !}H t20.3260.04 for t,1 ms,

t20.1460.02 for 1 ms,t,40 ms,

t20.5560.10 for t.40 ms.
~2.5!

The autocorrelation function can be treated as a measu
memory in the system while its exponents give informat
on the speed of correlation loss between states separat
time. The first scaling region extends to 1 ms, which is of
same order of magnitude as the average opening and clo
times ~0.79 and 0.84 ms, respectively!. It describes, there
fore, the correlation falloff while the system stays in o
state: open or closed. Fort belonging to~1,40! ms the cor-
relation function scales with exponent 0.1460.02. A low
value of the exponent assures a slow correlation fall. At
here is larger than the sum of average opening and clo
times, and also than the longest open time duration, the
ond scaling region ofk(t) function describes the long-rang
correlation between subsequent, different states of the c
nel. Note that fort equal to 40 ms the autocorrelation fun
tion still takes a high value. The third region ofk(t) scaling
shows the fastest correlation falloff.

The observed behavior of the autocorrelation function,
vealing the existence of long-range correlation~memory! in
the system, clearly indicates the non-Markovianity of t
time series behavior examined. Bassignhwaiteet al. point
out @14# the possibility of using the autocorrelation functio
in an estimation of the fractal dimension of a time series. T
fractal nature of ion-channel activity has also been descri

FIG. 8. The autocorrelation function of the ionic current signa
f

er

of

in
e
ing

ng
c-

n-

-

e
d

in @32#. For a signal occurring in one dimension, the frac
dimensiond lies between 1 and 2. The fractal dimensiond
and the exponent of autocorrelation scaling,Dk , are related
by a simple, linear formula@14#

d511
Dk

2
. ~2.6!

d belonging to the range 1–1.5 indicates a positive corre
tion between the nearest-neighbor points. When there is
correlation in the systemd is equal to 1.5;d higher than 1.5
indicates a negative correlation between neighboring valu

The fractal dimension, calculated on the basis of E
~2.6!, for three different scaling regions of the autocorre
tion function is equal to

d5H 1.1660.02 for t,1 ms,

1.0760.01 for 1 ms,t,40 ms,

1.2760.05 for t.40 ms.

~2.7!

The fractal dimension suggests, therefore, the existence
positive correlation in the system.

III. CONCLUSIONS

The main objective of the paper was to get information
the nature and statistical characteristics of potassium cur
through a locust potassium channel@1,2#. In the analysis we
have applied widely used statistical tools, which we, ho
ever, enriched and modified. The probability density funct
~PDF! has been found through the application of the ker
density estimator technique rather than the more popular
noncontinuous histogram. The usefulness of the analysi
the PDF in log-log coordinates has been emphasized. It
lowed us to discover power-law scaling at the closed a
open states distributions. The exponents of PDF scaling
peared to be surprisingly ‘‘stable’’ and independent of t
number of observations considered. Power laws have
been found in dwell-time distributions~open and closed!.
Application of the Hill estimator and the bootstrap metho
ology allowed us to get precise values of the exponents.
have also examined short- and long-time correlation in
system by means of the autocorrelation function. Three
gions of the autocorrelation function with different powe
law decays have been clearly distinguished. Low values
the exponents up to 40 ms assure slow correlation falloff
the existence of memory in the system. The non-Markov
character of the experimental data of potassium current,
amined already in@1#, has been, therefore, confirmed. Th
question, which appears in this context, is which physi
phenomena may be responsible for observed ionic cur
behavior? One has to take into account that recorded cur
represents a response of the whole system, consisting of
and the channel, to an external stimuli~voltage in the exam-
ined case!. The non-Markovian character of the record
data may result, therefore, from interactions between cha
structure and ions inside the channel. An influence of int
nal adsorption@33#, ‘‘a crowding’’ of ions inside narrow
pores @34,35#, and of conformational changes of polyme
chains@36# has already been pointed out. The state of
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whole system, being a result of interactions between ions
between ions and the channel, can influence the future
tory of the system, seen as a high value of the correlatio

We would like to emphasize that the statistical analy
presented in this paper can be applied to any long eno
time series, and enable one to get information on the m
statistical characteristics and the nature of the physical
cess examined.
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